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Map from one-dimensional quantum field theory to quantum chaos on a two-dimensional torus
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Dynamics of a class of quantum field models on a one-dimensional~1D! lattice in a Heisenberg picture is
mapped onto a class of quantum chaotic one-body systems on a configurational 2D torus~or 2D lattice! in the
Schrödinger picture. The continuum field limit of the former corresponds to the quasiclassical limit of the
latter. @S1063-651X~99!15608-3#

PACS number~s!: 05.45.2a, 03.65.Fd, 05.30.Fk, 72.10.Bg
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Understanding of long-time dynamics of interacting qua
tum many-body systems or quantized fields is a lo
standing open problem. In particular, one would like to u
derstand the conditions for the emergence of quan
mixing ~implying ergodicity and approach to equilibrium i
statistical mechanics!. Quantum mixing in many-body sys
tems, defined as the decay of general time autocorrela
functions, has recently been studied theoretically@1# and nu-
merically @2,3#. In classical mechanics of a bound Ham
tonian system of a single or few particles, we typically o
serve transitions from integrable and nonmixing behavio
mixing and generically chaotic behavior@4# when certain
interaction parameters are varied, whereas in quantum
chanics we find~see, e.g.,@5# for a recent account on th
subject! a corresponding transition from integrable behavi
characterized by the existence of quantum numbers, to a
tistical behavior, described well by the random mat
theory. Inspired by the rich quantum behavior of nonline
few-body systems, a few papers have appeared recently
cerning quantum chaos in nonlinear many-body systems@6#.

However, due to the discreteness of the~quasi!energy
spectrum, a finite bound quantum system can never be m
ing, whereas a many-body quantum system or a quant
field may acquire a continuous spectrum and become t
mixing in the thermodynamic or continuum limit. Although
genericstrongly nonintegrable infinite quantum many-bod
system is expected to be mixing and therefore to obey
standard laws of statistical mechanics, we see noa priori
reason to exclude nonmixing behavior in the thermodyna
limit of weaklynonintegrable many-body systems. Furth
more, numerical evidence has recently been published@3#
showing a dynamical phase transition in the thermodyna
limit from nonmixing behavior, exhibiting anomalous
ballistic transport, to mixing behavior, exhibiting norma
diffusive transport, in a family of nonintegrable systems
interacting fermions.

In this paper we wish to propose a nontrivial formal re
tion between a quasiclassical limit of a vanishing effect
Planck constant in a certain nonlinear one-particle syst
and a continuum limit of an associated one-dimensional~1D!
discrete nonlinear quantum field theory. We do so by c
structing explicitly an exactlinear mappingfrom a specific
large class of infinite interacting spin-1

2 chains in the Heisen
berg picture to an associated class of nonlinearone-body-
image dynamical systems~OBI! in the Schro¨dinger picture
which are realized either on a configurational 2D torus or
PRE 601063-651X/99/60~2!/1658~6!/$15.00
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a 2D lattice@tight-binding ~TB! formulation#. By explicitly
working out two examples, we will~i! show how integrable
behavior of the infiniteXX spin chain in spatially modulated
transversal magnetic fieldis connected to the integrability o
OBI and to the Harper equation@7#, and~ii ! demonstrate the
transition of the relatednonintegrable kicked XX chainfrom
nonmixing to mixing dynamics corresponding to the stoch
tic transition from regular to chaotic motion in the classic
limit of OBI.

Let s j
s , j PZ,sP$x,y,z% denote an infinite chain of inde

pendent Pauli spin-1
2 variables. We start by generalizing th

result of@8#, namely, we find that the operator space span
by the following set of spatially modulated observabl
$Un(q),Vn(q);nPZ,qP@2p,p)%,

Un~q!

5 (
j 52`

`

ei [ j 1 ~1/2! unu]qH s j
x ~s j

z!n21 s j 1n
x n>1,

2s j
z n50,

s j
y ~s j

z!2n21 s j 2n
y n<21,

Vn~q!

5 (
j 52`

`

ei [ j 1 ~1/2! unu]qH s j
x ~s j

z!n21 s j 1n
y n>1,

1 n50,

2s j
y ~s j

z!2n21 s j 2n
x n<21

where (s j
z)kª) l 51

k s j 1 l
z for k>1 and (s j

z)0ª1, is closed
under the Lie bracket@A,B#5AB2BA and hence forms an
infinite-dimensional dynamical Lie algebra~DLA !:

@Un~q!,Ul~w!#52i expF i

2
~ lq1nw!sl 2nGVn2 l~q1w!

22i expF i

2
~ lq1nw!sn2 l GVl 2n~q1w!,

@Un~q!,Vl~w!#52i expF i

2
~2 lq1nw!sl GUn1 l~q1w!

22i expF i

2
~ lq1nw!sl GUn2 l~q1w!,
1658 © 1999 The American Physical Society
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@Vn~q!,Vl~w!#5~sn1sl !H sinF1

2
~ lq1nw!G

3@~sn2 lsl11!Vn2 l~q1w!

2~sl 2nsl11!Vl 2n~q1w!#

12sinF1

2
~ lq2nw!GVn1 l~q1w!J ,

~1!

wheresnª21,0,1 forn,,5,.0, respectively, is a sign o
integern. Checking of the commutation relations~1! is te-
dious but straightforward work. A few notable members
the DLA are: the Ising orXX Hamiltonian, HI5JU1(0),
HXX5J@U1(0)1U21(0)#, spin interaction with modulated
transversal magnetic fieldhz5hcos(ej) with a period of
2p/e lattice spacingsHmh5

1
2 h@U0(e)1U0(2e)#, spin cur-

rent j s5V1(0)1V21(0), etc. Let us fix the fundamenta
modulation wave numbere and introduce the following no
tation:

~n,k!PZ2, Un,k
6 5

1

2
@Un~ke!6U2n~2ke!#,

Vn,k
1 5

1

2
@Vn~ke!1V2n~2ke!#sn ,

Vn,k
2 5

1

2
@Vn~ke!2V2n~2ke!#,

Wn,k
6 5Un,k

6 1 iVn,k
6 ,

~y,x!PT2, W6~y,x!5
1

2p (
n,k52`

`

ei (ny1kx)Wn,k
6 .

We may also considere as a lattice spacing and treatWn,k
6 as

a set of spatially 2p-periodic fields. We will assume that th
modulation isincommensurablewith the lattice spacing, i.e.
that e/2p is irrational; otherwise,Wn,k

6 are periodic with
respect to indexk. The DLA becomes a Hilbert space whe
we introduce an infinite temperature~grand! canonical scalar
product@8#

~AuB!ª lim
L˜`

1

L
22Ltr A†B,

whereL is a diverging length of the spin chain. Let the tw
linear subspaces of observables spanned byWn,k

s @or
Ws(y,x)] for sP$1,2% be denoted byMs . The spaces
M1 andM2 areorthogonaland observablesWn,k

1 andWn,k
2

~for n>1) form an orthonormal basis in each of them, sin
one can show by direct calculation that

~Wn,k
1 uWm,l

1 !5dn,mdk,l ,

~Wn,k
1 uWm,l

2 !50, ~2!

~Wn,k
2 uWm,l

2 !5~dn,m2dn,2m!dk,l .

The full set$Wn,k
2 % is overcomplete, sinceW2n,k

2 52Wn,k
2 ,

while the subspaceM15M1
† is self-adjoint, sinceWn,k

1†
f

e

5W2n,2k
1 . One can write analogous relations in terms of co

tinuous variables (y,x). We have DLA5M2
†

% M1 % M2 .
Note that theadjoint map (adA)B5@A,B# generates the
Heisenberg motion on the DLA, exp(itadA)B5eitABe2 i tA.
In particular, the motion generated byUn,k

1 has a beautiful
structure. Let us write the self-adjoint Hamiltonian in a ge
eral form as

H5(
n,k

1

4
hn,kUn,k

1 ~3!

using a set of possibly time-dependent complex~Hermitian!
coefficients hn,k5hn,k(t)5hn,2k* . Tedious but straightfor-
ward calculation, using algebra~1!, gives the action of adH
on two continuous sets of observablesW1(y,x),W2(y,x),
(y,x)PT2 which can be written in terms of two nonloca
Schrödinger operatorsĤ6:

~adH !W6~y,x!52
1

\
Ĥ6W6~y,x!, ~4!

Ĥ15(
n,k

\gn,k@sin~np̂x2kp̂y!sin~kx1ny2gn,k!

2sin~np̂x1kp̂y!sin~kx2ny2gn,k!#,
~5!

Ĥ25(
n,k

\gn,k@cos~np̂x2kp̂y!cos~kx1ny2gn,k!

1cos~np̂x1kp̂y!cos~kx2ny2gn,k!#,

where the coefficients are rewritten in terms of modulus a
phase ashn,k5gn,kexp(ign,k), and p̂x,y52 i\]/]x,y are mo-
mentum operators conjugate tox,y with an effective Planck
constant@9#

\5
1

2
e. ~6!

Since Heisenberg dynamics generated byH are closed on
Ms , (adH)Ms#Ms , one may write a general time
evolving operatorA(t)PMs in terms of a complex-valued
Schrödinger wave function, in either momentumCn,k

A (t) or
positionCA(y,x;t) representation

A~ t !5(
n,k

Cn,k
A ~ t !* Wn,k

s 5E
T2

dydxCA~y,x;t !* Ws~y,x!.

~7!

By means of Eq.~4! and the fact thatĤs is Hermitian on
L2(T2) @which can be checked directly using expressio
~5!# one can easily show that the Heisenberg evolution of
observableA(t), (d/dt)A(t)5 i (adH)A, is fully equivalent
to the Schro¨dinger equation

i\
d

dt
CA~y,x;t !5ĤsCA~y,x;t ! ~8!

governing the time evolution by OBI HamiltonianĤs of one
particle on a torus T2. The bilinear map „H,A(t)…
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↔„Ĥs,CA(y,x;t)… is a central result of this paper. We mak
the following concluding overview remarks.

~i! There is nontrivial ‘‘classical limit’’\˜0 of the OBI,
equivalent~6! to the continuum field limit of the quantum
spin chain modele˜0, if \hn,l ~and nothn,l alone! is kept
constant and finite.

~ii ! The operatorsĤ1 andĤ2 ~5! commute,

@Ĥ1,Ĥ2#[0, ~9!

and the Poisson bracket of the corresponding classical c
terparts vanishes.

~iii ! As a consequence of the previous remark, we fi
that the OBI~8! ~and its classical limit! is integrable, Ĥ2s

being the second integral of motion, provided the origin
spin-field HamiltonianH ~3! or OBI HamiltonianĤs is au-
tonomous, i.e., (]/]t)H[0. However, one has a possibilit
of chaotic motion in the classical limit and the emergence
quantum chaos when the problem is explicitly time dep
dent, for instance, where the coefficients of the Hamilton
are periodic functions,hn,k(t11)5hn,k(t). In such a case
one integrates the evolution over one period of time a
defines the unitary Floquet mapsU5T̂exp@2*0

1dtH(t)#, Ûs

5T̂exp@2*0
1dtĤs(t)#.

~iv! Temporal correlation functions of the quantum fie
problem are mapped@using Eqs.~2!# onto transition ampli-
tudes of the OBI

„A~ t !uB~ t8!…5H ^CA~ t !uCB~ t8!& s51,

^CA~ t !uP̂yC
B~ t8!& s52, ~10!

where P̂yC(y,x)5C(y,x)2C(2y,x). Therefore, ergodic
properties of many-body dynamics in the DLA are det
mined by the spectral properties of the OBI:~a! the spin
chain isquantum mixingin Ms , namely,

lim
t˜`

„A~ t !uB…50,

for any A,BPMs , if the spectrum of the OBI Hamiltonian
Ĥs ~or of the OBI Floquet mapÛs) does not have a~non-
trivial! point component.~b! the spin chain isquantum er-
godic in Ms , namely,

lim
T˜`

1

TE0

T

dt„A~ t !uB…50,

if 0 ~or 1) is not in the~nontrivial! point spectrum ofĤs ~or
Us). In the autonomous case,]H/]t[0, the HamiltonianH
and the trivial zero-frequency eigenstate,Ĥ1CH5C [H,H]

50, Cn,k
H 5 1

8 (hn,2k1h2n,2k) should be excluded fromM1

and L2(T2), respectively. This means that we should th
consider above only such pairs of observablesA,BPM1

which are orthogonal to the Hamiltonian, (AuH)5(BuH)
50.

We apply the above results to work out two interesti
examples.
n-

d

l

f
-
n

d

-

Example I. XXspin chain in a spatially modulated quas
periodic transversal magnetic fieldhW j5„0,0,hcos(ej)…
(XXmh):

H5HXX1Hmh5JU1,0
1 1

1

2
h~U0,1

1 1U0,21
1 !. ~11!

Here the Heisenberg dynamics on DLA is governed by
following commuting one-body problems:

Ĥ15a sin p̂x siny2b sin p̂y sinx, ~12!

Ĥ25a cosp̂x cosy1b cosp̂y cosx,

wherea52eJ54\J,b52eh54\h. This model is directly
related to the electron motion on a 2D rectangulara3b lat-
tice in a uniform perpendicular magnetic fieldh8 within
the TB approximation@7,10#. In the symmetric gaugeAW
5 1

2 h8(2y,x,0) the TB problem with the band energ
E(KW )5 (a/2)cos(aKx)1 (b/2)cos(bKy) reads

ĤCn,k5
a

2
~ei ~1/2! ekCn11,k1e2 i ~1/2! ekCn21,k!

1
b

2
~e2 i ~1/2! enCn,k111ei ~1/2! enCn,k21!,

~13!

where e5eoabh8/co\phys is here the dimensionless mag
netic flux through one lattice cell. We note that discrete
dices (n,k)PZ2 now label the position lattice (na,kb) while
continuous indices (y,x)PT2 are the conjugate quasimo
menta. OBI HamiltoniansĤ6 can be written in terms ofĤ
and its time reversal Ĥ* 5Ĥuh8˜2h8 , namely Ĥ65Ĥ
7Ĥ* , and hence@Ĥ,Ĥ* #50. Using a different, Landau
gaugeAW 5h8(0,x,0) the TB problem~13! can be rewritten in
terms of the 1D Harper equation@7#

1

2
a~un111un21!1b cos~ne2q!un5Eun . ~14!

Let us assume for the moment thata,b. Then un(q;E)
5un is a uniqueexponentially localizedeigenfunction~EF!
of Eq. ~14! that has a dense pure point spectrum, and

Cn,k~q;E!5expF i S q2
1

2
enD kGun~q;E!

is adegenerate denseset of EFs of the full TB problem~13!,

ĤCn,k~q;E!5ECn,k~q;E!,

for a denseset of parametersq @10#. Though Ĥ and Ĥ*
should have a common set of EFs,Cn,k(q;E) is not an EF
of Ĥ* , nor is it in L2, since it is extendedin the second
variablek. We search for a localized EF in both variabl
with an ansatz

Fn,k~q;E,E8!5(
j

v jCn,k~q1e j ;E!
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and require

Ĥ* Fn,k~q;E,E8!5E8Fn,k~q;E,E8!,

yielding again the Harper equation~14! for the coefficients
vn5un(q;E8). In this way we obtain acompletecommon
set of EFs ofĤ andĤ* in terms of a convolution of two 1D
Harper functions multiplied by the appropriate phase fac

Fn,k~q;E,E8!5(
l

ul 1n~q;E!ul~q;E8!ei [q2e l 2 ~1/2! en]k,

~15!

which is also a common set of EFs ofĤ6 ~12!,

Ĥ6Fn,k~q;E,E8!5~E7E8!Fn,k~q;E,E8!. ~16!

The obvious propertyFn,k(q1e;E,E8)5Fn,k(q;E,E8)
suggests the independence of the EFs from parameterq pro-
vided e/2p is irrational. If a.b, localized EFs can be con
structed analogously by the duality transformati
n↔k,y↔x.

Thus we have found that the OBIĤ6 have adense pure
point spectrumfor aÞb, henceXXmhis nonmixing, noner-
godic, and evencompletely integrablesystem, namely, the
zero-energy eigenstates of the HamiltoniansĤs are the pre-
images@under the mapping~7!# of the two infinite sets of
conserved charges,

Qs~E!5(
n,k

Fn,k* ~q;E,sE!Wn,k
s , @H,Qs~E!#[0.

The interesting critical casea5b where one finds a singula
continuous fractal spectrum is not resolved by our analy

However, the time correlation function of a certain o
servable„A(t)uA… may still decay to zero ast˜`, provided
that the observableA is orthogonal to the whole set of con
served chargesQs(E) @11#. Let us assume thatAPM1 , for
simplicity, and putqª0 for convenience. If the continuou
set of orthogonal localized EFs is normalized as localiz
functions should be, namely, as^F(E,E8)uF(E,E8)&51,
then the time-averaged autocorrelation function can be
pressed as

lim
T˜`

1

T E
0

T

dt~A~ t !uA!5E dEu^CAuF~E,E!&u2. ~17!

Therefore, the averaged correlation function vanishes
observableA behaves as in an ergodic system, ifCA is or-
thogonal to all diagonal eigenfunctionsF(E,E). Let us now
assume again thata,b. Then, the EFs are given by expre
sion ~15! from which one easily recognizes the symme
relation

Fn,0~E,E!5F2n,0~E,E!, ~18!

from which it follows that̂ CuF(E,E)&[0 for any function
of the formCn,k5dk,0(cn2c2n). Interestingly, this is pre-
cisely the case for thespin current js5W1,0

1 2W21,0
1 ,

Cn,k
j s 5dk,0(dn,12dn,21). Therefore, we have show

that the high-temperature ~b!1! spin stiffness
r

.

d

x-

d

Dsª limT˜`b/T*0
Tdt@ j s(t)u j s# is zero,Ds50, and the spin

transport isnonballistic, if J,h (a,b), whereas forJ.h
(a.b) we find, in general,ballistic transport, Ds.0, since
no such symmetry as Eq.~18! exists if a.b. We have no
further analytical arguments to exclude possible nondecay
oscillations of correlation function„j s(t)u j s… in the nonbal-
listic regime, which are, in principle, still possible eve
though the time-averaged value is zero. In order to cla
this issue, we have performed numerical simulations@which
have been performed using the same method as describ
Example II~see below!, except that the kick parametersa,b
have been chosen here to be very small (;1022)# that
strongly suggest that in the nonballistic regime~a,b! the
current time correlation function indeed decays ast˜`, per-
haps asymptotically as„j s(t)u j s…;1/t2.

Note that the above theoretical result of the transit
from ballistic to nonballistic transport can be directly appli
to the particle or electrical transport in a 1D chain of fr
spinless fermions with hopping amplitudet5J in oscillatory
chemical potential with amplitudeh, since one may use th
well known Wigner-Jordan transformation to go from spin
fermion variables.

Example II.Kicked XXmhmodel (kXXmh)with periodi-
cally time-dependent Hamiltonian

H~ t !5JU1,0
1 1

1

2
h~U0,1

1 1U0,21
1 !(

m
d~ t2m!. ~19!

The one-period propagator from just after the kick

U5expF2 i
1

2
h~U0,1

1 1U0,21
1 !Gexp~2 iJU1,0

1 ! ~20!

is equivalent to the Floquet quantum maps of two kick
OBIs:

Û15expS ib

\
sin p̂y sinxDexpS 2 ia

\
sin p̂x sinyD ,

~21!

Û25expS 2 ib

\
cosp̂y cosxDexpS 2 ia

\
cosp̂xcosyD .

In the following, we will consider only the mapÛ1, since the
spaceM1 contains physically more interesting observabl
e.g., the spin current. The Floquet evolutionCA(m)
5Û1mCA(0), theimage of the Heisenberg evolution of ob
servables,A(m)PM1 , is in the classical limit equivalent to
a symplectic~volume-preserving! (232)D map onT23R2,

x85x1a cospx siny, py85py2a sinpx cosy,
~22!

y85y2b cospy8 sinx8, px85px1b sinpy8 cosx8,

which is nonintegrable and~almost! fully chaotic for suffi-
ciently large values of kick parameters,a,b@1. An interest-
ing question is now if and when the dynamics ofkXXmhare
quantum mixing and how it corresponds to the dynamics
the classical map~22!. This problem has been approach
numerically by iterating the one-body Floquet mapÛ1 on a
finite ~truncated! momentum space (n,k)P$2N/2•••N/2%2.
The position states are henceforth discretized asxj5s j,yj
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5sj, wheres52p/N. The truncated Floquet mapÛ1 can be
efficiently implemented by means of fast Fourier transform
tion ~FFT!, namely, ifF is 1D FFT onN sites, then theN2

3N2 Floquet matrix is decomposed as

~F21
^ 1!~diagCn,k!~F ^ F21!~diagDn,k!~1^ F !,

with diagonal matricesCn,k5exp@i(b/\)sinsnsin\k# and
Dn,k5exp@2i(a/\)sin\ nsinsk#. One iteration of the Floque
map requires;4N2log2N computer operations per time ste
In order to avoid recurrences of quantum probability due
finiteness of momentum space, we use an absorbing bo
ary in momentum space, namely, after each iteration of
truncated Floquet map we multiply the wave function by
box window, Cn,k(m)˜u(N/22a/\2unu)u(N/22b/\
2uku)Cn,k(m). Convergence to the true quantum dynam
on a torus has been checked by comparing results for dif
ent truncations, sayN andN/2, and we went up toN5214.

In Fig. 1 we show numerical results for the autocorre
tion function of the spin currentC(m)5„j s(m)u j s(0)… while
similar, fully compatible results have been obtained for t
time correlations of a few other observables.~i! For suffi-
ciently large kick parametersa,b the classical map~22! is
strongly chaotic and mixing, exhibiting normal diffusion in
momentum plane (px ,py). However,kXXmhmodel is not
asymptotically~as timem˜`) mixing for any nonvanishing
value of \: uC(m)u is rapidly ~possibly exponentially! de-
creasing down to some valueC* 5uC(m) ū, where it satu-
rates. When we decrease\, C* decreases proportionally
C* }\, and hence in the quasiclassical/continuum limit\

FIG. 1. lnuC(m)u in kXXmhfor several indicated values of pa
rametersa ande while b5a/4. Note the transition to mixing dy-
namics ase is decreased~from heavy to light full curves! for the
chaotic casea56 and stable nonmixing behavior for the quasireg
lar casea53 @dotted curve, curves for other~small! values ofe
would be almost indistinguishable#. Broken lines at lnue/3u indicate
the scalingC* }\5

1
2 e. In the two insets we show two orbits in th

momentum plane~chaotic, diffusive fora56 and quasiregular for
a53) of the map ~22! of length 3000 starting atx050.2,y0

50,px050,py050.005.
-

o
d-
e

s
r-

-

e

51
2e˜0 the point spectrum ofÛ1 vanishes andkXXmhap-

proaches mixing behavior in accordance with the class
map ~22!. ~ii ! For smaller but still nonvanishing values o
a,b the classical map enters into the regime
Kol’mogorov-Arnold-Moser~KAM ! quasiintegrability with
invariant tori suppressing the diffusion of momenta (px ,py).
Correspondingly,kXXmhis strongly nonmixing andC* ;1
for any value of\. In this regime,C(m) is very weakly\
dependent. In both regimes,~i! and~ii !, the square widths of
the wave packets have been found to beuniformly increasing
in time, ^C j s(m)u p̂x,y

2 uC j s(m)&}m, and limited only by the
size of truncated momentum spaceN. This rules out the pos-
sibility of quantum localizationand the existence of apure
point spectrum, and indicates the coexistence ofpoint and
continuousspectra for any nonvanishing values of\ and
a,b, a situation which is very similar and possibly related
the 1D kicked Harper model@12#. In the limit a,b˜0, the
continuous spectral component vanishes and we recove
integrableXXmh model with pure point spectrum as dis-
cussed above. The quantum correlation functionC(m) seems
to follow the quasiclassical propagator only up to a logari
mically short time, namely, we found empirically that devi
tion ~when it is still small! increases exponentiallyuC(m)
2C\˜0(m)u'0.022\2elm with l'0.59 for a53, b50.75
and withl'1.1 for a56, b51.5.

In a specific infinite-dimensional class of~Pauli spin, or
spinless fermion! quantum field models in 1D, the Heisen
berg time evolution in two disjoint infinite-dimensional lin
ear subspaces of essential field observables has been s
to be formally equivalentto the Schro¨dinger dynamics of a
class of nonlinear one-body image problems on a 2D to
~or 2D lattice!. Moreover, the continuum field limit in the
original problem has been shown to be equivalent to
~quasi!classical limit in the image problem. Autonomou
models of this class were found to be quantum integrable
related to a possibly novel class of integrable classical o
body problems in two dimensions~5, 9!. For example, the
dynamics of theXX chain in a static quasiperiodic transvers
field has been solved in terms of the Harper equation@13#,
and an interesting transition from ballistic to nonballis
spin transport has been discussed. However, time-depen
~e.g., periodically kicked! models of this type behave in
nonintegrable fashion, being mapped onto one-body pr
lems with a chaotic classical limit. It seems that spat
modulation is crucial to breaking integrability since a sp
chain kicked with a homogeneous transversal field rema
completely integrable@8#. In the continuum field limit our
kicked spin chain model~kXXmh! has been demonstrated
undergo a~phase! transition from mixing to nonmixing dy-
namics~similar to a transition found in@3#!, as its one-body
counterpart in the classical limit undergoes a stochastic t
sition from chaotic to quasiregular motion. This is an inte
esting link between quantum field theory and chaotic dyna
ics and may inspire future research in this direction.

The numerical simulations in this work were perform
on a computer belonging to the Theoretical Physics divis
~F1! of The Jozef Stefan Institute, Ljubljana. Their suppo
as well as the financial support by the Ministry of Scien
and Technology of the Republic of Slovenia, are gratefu
acknowledged.
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