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Map from one-dimensional quantum field theory to quantum chaos on a two-dimensional torus
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Dynamics of a class of quantum field models on a one-dimensidiallattice in a Heisenberg picture is
mapped onto a class of quantum chaotic one-body systems on a configurational 2@rt@Ddattice in the
Schralinger picture. The continuum field limit of the former corresponds to the quasiclassical limit of the
latter.[S1063-651X99)15608-3

PACS numbegps): 05.45-a, 03.65.Fd, 05.30.Fk, 72.10.Bg

Understanding of long-time dynamics of interacting quan-a 2D lattice[tight-binding (TB) formulation]. By explicitly
tum many-body systems or quantized fields is a longworking out two examples, we willi) show how integrable
standing open problem. In particular, one would like to un-behavior of the infiniteXX spin chain in spatially modulated
derstand the conditions for the emergence of quanturfransversal magnetic field connected to the integrability of
mixing (implying ergodicity and approach to equilibrium in OBI and to the Harper equatidi], and(ii) demonstrate the
statistical mechani¢s Quantum mixing in many-body sys- transition of the relatedonintegrable kicked XX chaiinom
tems, defined as the decay of general time autocorrelatioRonmixing to mixing dynamics corresponding to the stochas-
functions, has recently been studied theoreticdllyand nu-  tic transition from regular to chaotic motion in the classical
merically [2,3]. In classical mechanics of a bound Hamil- limit of OBI.
tonian system of a single or few particles, we typically ob- Let o§,j e Z,se{x,y,z} denote an infinite chain of inde-
serve transitions from integrable and nonmixing behavior tgpendent Pauli spig-variables. We start by generalizing the
mixing and generically chaotic behavip#] when certain result of[8], namely, we find that the operator space spanned
interaction parameters are varied, whereas in quantum méy the following set of spatially modulated observables
chanics we find(see, e.g.[5] for a recent account on the {Up(9),V,(9);neZ,de[—m,m)},
subjecj a corresponding transition from integrable behavior,
characterized by the existence of quantum numbers, to a stak,(9)
tistical behavior, described well by the random matrix < 2 <
theory. Inspired by the rich quantum behavior of nonlinear . 0 (0))n-1071n n=1,
few—pody systems, a feV\( papers have appeared recently con- _ Z oili+ 219 = sz n=0,
cerning quantum chaos in nonlinear many-body systéhs = vz y

However, due to the discreteness of tfgpiasjenergy 0y (0})-n-10]n N<-1,
spectrum, a finite bound quantum system can never be mix-
ing, whereas a many-body quantum system or a quantized
field may acquire a continuous spectrum and become trulyn(ﬁ)
mixing in the thermodynamic or continuum limit. Although a

: . e o (D)1 0Y n=1,
genericstrongly nonintegrable infinite quantum many-body * i (01)n-107+n
system is expected to be mixing and therefore to obey the — ' ili+ (1/2)[n]9 1 n=0,
standard laws of statistical mechanics, we seeangriori j=—= —UJy(sz)fnflU}ln ns-1

reason to exclude nonmixing behavior in the thermodynamic
limit of weaklynonintegrable many-body systems. Further-
more, numerical evidence has recently been publidi3éd \where (gjz)k:=1'[:‘=lgjz+I for k=1 and (O'J-Z)O:=1, is closed
showing a dynamical phase transition in the thermodynamiginder the Lie bracketA,B]=AB—BA and hence forms an

limit from nonmixing behavior, exhibiting anomalous- infinite-dimensional dynamical Lie algebfBLA):
ballistic transport, to mixing behavior, exhibiting normal-

diffusive transport, in a family of nonintegrable systems of i

interacting fermions. [Uy(9),Ui(p)]=2i ex;{z(l d+ne)s_,
In this paper we wish to propose a nontrivial formal rela-

tion between a quasiclassical limit of a vanishing effective i

Planck constant in a certain nonlinear one-particle system, —2i ex;{z(lfﬂ Ne)Sy_|

and a continuum limit of an associated one-dimensi¢ha)

discrete nonlinear quantum field theory. We do so by con- _

structing explicitly an exaclinear mappingfrom a specific . I

large class of infinite interacting spi¢hains in the Heisen- [Un(9).Vi(@)]=2i ex;{z

berg picture to an associated class of nonlineae-body-

image dynamical systen{®©BI) in the Schrdinger picture

which are realized either on a configurational 2D torus or on

Vo i((9+¢)

Vl—n(ﬁ"'@):

(=19+ne)s |Up(9+ @)

Uy (d+9),

i
—2i ex;{z(l J+ne)s
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=W', . One can write analogous relations in terms of con-

tinuous variablesy(,x). We have DLA=M" e, eMm_ .

Note that theadjoint map (adA)B=[A,B] generates the

X[(sp-151+ 1)V (9 + @) Heisenberg motion on the DLA, exp{dA)B=e'""Be '*A.

B In particular, the motion generated by, has a beautiful
S-S+ DVi-n(9+ )] structure. Let us write the self-adjoint Hamiltonian in a gen-

eral form as

) H=2

n,k

[Va(9),Vi(@)]=(snt 5] sin

1
E('ﬂ“— n(p)

+2$ir{%(l F—ne) Vo (F+ cp)},

hnkUn i ()

4>||a

wheres,:=—1,0,1 forn<<,=,>0, respectively, is a sign of
integern. Checking of the commutation relatioi$) is te-
dious but straightforward work. A few notable members of
the DLA are: the Ising orXX Hamiltonian, H,=JU4(0),
Hyx=J[U1(0)+U_4(0)], spin interaction with modulated
transversal magnetic fielth,=hcos(j) with a period of a nL
277/ e lattice spacing$l = h[Uo(€)+Uo(— €)], spin cur-  Schralinger operatorg{™:
rent j=V,(0)+V_4(0), etc. Let us fix the fundamental

using a set of possibly time-dependent comgldermitian
coefficients h, ,=h, ((t)=hp; _. Tedious but straightfor-
ward calculation, using algebia), gives the action of ad
on two continuous sets of observabMs (y,x),W™ (y,X),
(y,x) € T? which can be written in terms of two nonlocal

modulation wave numbes and introduce the following no- (adH)W* (y,x)=— %ﬂiwi(y,x), (4)
tation:
1 o e
(n,k)e7?, Uﬁkzz[un(ke)iu_n(—ke)], H+=n2k fign kL sin(npy—kpy)sin(kKX+ny— vy k)
Vi= 5 [Va(ke) +V_o( ~ke) s = Sin(np+kpy)sintkx—ny= 0],
, ®
;k:%[vn(ke)_vfn(_ke)]v 7:[_:“2* ﬁgn,k[cos{nbx—kby)cos{kar ny=¥nk
nk=Unict Vo, +cognpy+kpy)cosgkx—ny— v, 1],
(y,x) e T2, W= (y,x)= i E gl(nyrlooyy= | where the coefficients are rewritten in terms of modulus and
T nk=-= " phase a1, =0, expiy,, and pXy —ihdldy, are mo-

. i ) N mentum operators conjugate xgy with an effective Planck
We may also consider as a lattice spacing and treat,  as constan{9]

a set of spatially Z--periodic fields. We will assume that the

modulation isincommensurablwith the lattice spacing, i.e.,

that e/27 is irrational; otherwise, Wy are periodic with h= 7€ (6)
respect to index. The DLA becomes a Hilbert space when

we introduce an infinite temperatufgrand canonical scalar  Since Heisenberg dynamics generatedtbyare closed on

product[8] M,, (adH)M,CM,, one may write a general time-
evolving operatorA(t) e M, in terms of a complex-valued
(AlB):= lim lsztrATB, Sch.r"gdinger wave function, in .either momentuﬁnﬁ,k(t) or
Lo position WA(y, x;t) representation

wherelL is a diverging length of the spin chain. Let the two % A .

linear subspaces of observables spanned W, [or A= E P “k_szddeLI’ (¥ G 07WI (Y, ).
W(y,x)] for ce{+,—} be denoted byJi,. The spaces )
<M, andM_ areorthogonaland observable®/, , andW,, ,

(for n=1) form an orthonormal basis in each of them, sinceBy means of Eq(4) and the fact that” is Hermitian on

one can show by direct calculation that L?(T?) [which can be checked directly using expressions
(5)] one can easily show that the Heisenberg evolution of the
Wi Wi 1) = 8 mOk.1 » observableA(t), (d/dt)A(t)=i(adH)A, is fully equivalent

to the Schrdinger equation
Wi | Wi, ) =0, @

d .
N ih—TA(y,x:t)=HPA(y,x;t 8
(Wi Wi )= (8= S ) i1 TR (Xt ®

The full set{W, ,} is overcomplete sinc®V_, = —-W, i3 governing the time evolution by OBI Hamiltonid” of one
while the subspacélt, = E)JL is self-adjoint, smceW particle on a torusT2. The bilinear map (H,A(t))
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H(ﬁ”,‘l’A(y,X;t)) is a central result of this paper. We make Example l. XXSpIn chain in a Spatla"}/ modulated quaSi'
the following concluding overview remarks. periodic transversal magnetic fielch;=(0,0hcos(ej))
(i) There is nontrivial “classical limit"z—0 of the OBI,  (XXmh)
equivalent(6) to the continuum field limit of the quantum .
spin chain modek—0, if zh,, | (and noth, ; along is kept _ T + +
constant and finite. H=HxxtHmp=JU; of 50(UgrtUo—y). (1D)

. ~ + ~
(if) The operatorg{™ and" (5) commute, Here the Heisenberg dynamics on DLA is governed by the

[+ 7 ]=o0, ) following commuting one-body problems:

_ , . H* = asinp, siny— Bsinp, sinx, (12)
and the Poisson bracket of the corresponding classical coun-
terparts vanishes.

(iii) As a consequence of the previous remark, we find
that the OBI(8) (and its classical limjtis integrable 7  wherea=2e)=4#J,3=2¢eh=4%h. This model is directly
being the second integral of motion, provided the originalrelated to the electron motion on ® 2ectangulaaX b lat-
spin-field HamiltoniarH (3) or OBI Hamiltonian{” is au-  tice in a uniform perpendicular magnetic field within
tonomous, i.e., {/dt)H=0. However, one has a possibility the TB approximation[7,10]. In the symmetric gaugé\
of chaotic motion in the classical limit and the emergence of=3h’(—y,x,0) the TB problem with the band energy
quantum chaos when the problem is explicitly time depeng(K)= (a/2)coséK,)+ (5/2)cosbK, ,) reads
dent, for instance, where the coefficients of the Hamiltonian
are periodic functionsh, \(t+1)=h, ((t). In such a case,
one integrates the evolution over one period of time and
defines the unitary Floguet maps=7exd — [sdtH(t)],
=Texy — [HdtHO(1)]. + é(efi W2eng  peil2emy |y

(iv) Temporal correlation functions of the quantum field 2 ' ’
problem are mappeflsing Eqgs.(2)] onto transition ampli- (13
tudes of the OBI

H~ = a cosp, cosy+ 3 cosp, COSX,

A a .
H\Pn’k:E(el(IIZ) Ek‘lrn+l,k+e i(1/2) Ek\l}ﬂ—l,k)

where e=e,abh’'/cyfi s is here the dimensionless mag-
(WA |PB(t)) o=+, netic flux through one lattice cell. We note that discrete in-

Y — - dices (,k) € 72 now label the position latticen(a,kb) while
A(1)|B(t"))= / - _ 10 ) - . .
(ADIB()) (PADIPPE(L)) o=—, (10 continuous indices y(,x) € T? are the conjugate quasimo-

menta. OBl Hamiltoniang{™ can be written in terms of{
where P, ¥ (y,x) =¥ (y,x) - ¥(—y,x). Therefore, ergodic and its time reversal H*=H|p——p, namely 7*=7
propertles of many-body dynamics in the DLA are deter-¥#*, and hencd H,#*]=0. Using a different, Landau
mined by the spectral properties of the OB& the spin  gaugeA=h’(0x,0) the TB problen{13) can be rewritten in

chain isquantum mixingn 91, , namely, terms of the 1D Harper equatid]
lim (A(t)|B)=0, 1
t—soo Ea(un+1+ Up_1)+Bcogne—9)u,=Eu,. (14

for anyA,Be M, , if the spectrum of the OBI Hamiltonian | et us assume for the moment that 8. Then u,(9;E)
F (or of the OBI Floquet map(”) does not have &on-  =u,, is a uniqueexponentially localize@igenfunction(EF)
trivial) point component(b) the spin chain iquantum er- of Eq. (14) that has a dense pure point spectrum, and
godicin 971, namely,

Un(9,E)

T lIfn’k(ﬁ‘;E)zexp{i(1‘}—%en)k
"mfj dt(A(t)|B)=0,
0

T—w

is adegenerate denseet of EFs of the full TB probleril3),

if 0 (or 1) is not in the(nontrivial) point spectrum of<” (or ﬂ\Pn,k(ﬁ;E)=E‘Ifn'k(ﬁ;E),

U7). In the autonomous caseH/Jt=0, the HamiltoniarH . .
and thetrivial zero-frequency eigenstatéd/*¥H=w[HHl  for a denseset of parameters) [10]. Though™ and H*
=0, ¥H,=%(h, _y+h_, ) should be excluded fromn, should have a common set of EFE, \(;E) is not an EF

and LZ(TZ) respectively. This means that we should thenof H*, nor is it in L%, since it isextendedin the second
consider above only such pairs of observalbles e 9. variable k. We search for a localized EF in both variables
which are orthogonal to the HamiltonianA|H)=(B|H)  Wwith an ansatz
=0.

We apply the above results to work out two interesting D, (SEE)=D VW, (9 €);E)
examples. ’ - :
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and require Dg:=limr_..BTSdtj«(t)|js] is zero,Dg=0, and the spin
- _ , , _ . transport isnonballistig if J<h (a<p), whereas forJ>h
H* @ ((FE,E)=E'®p(FE,E"), (a>B) we find, in generalballistic transport Dg>0, since

yielding again the Harper equatidt4) for the coefficients no slch symmetry as Eq18) exists if o> B. We have no .

vo=u,(9:E"). In this way we obtain aompletecommon further analytical arguments to exclude possible nondecaying
AR A ) oscillations of correlation functioij4(t)|js) in the nonbal-

set of EFs of{ and’¢* in terms of a convolution of two 1D jigic regime, which are, in principle, still possible even

Harper functions multiplied by the appropriate phase factoriq,gh the time-averaged value is zero. In order to clarify

this issue, we have performed numerical simulatipmisich
P (9 E,E) = Uy n(9E)u (9;E)el[?7 e (12 enlk have been performed using the same method as described in
! Example ll(see below, except that the kick parameteais
(15 have been chosen here to be very small10 ?)] that
strongly suggest that in the nonballistic regifie<p) the
current time correlation function indeed decays$-ase, per-
haps asymptotically a§ 4(t)|j<)~ 142.

Note that the above theoretical result of the transition
from ballistic to nonballistic transport can be directly applied
to the particle or electrical transport in a 1D chain of free
spinless fermions with hopping amplitutie J in oscillatory
chemical potential with amplitudk, since one may use the
well known Wigner-Jordan transformation to go from spin to

- fermion variables.
_Thus we have found that the OB{, have ?“?'ense pure Example 1l.Kicked XXmhmodel (kXXmh)with periodi-
point spectrunfor a# B, henceXXmhis nonmixing, noner- cally time-dependent Hamiltonian

godic, and evertompletely integrablesystem, namely, the
zero-energy eigenstates of the Hamiltonidts are the pre-
images[under the mapping7)] of the two infinite sets of
conserved charges

which is also a common set of EFs & (12),
H* @y (EE)=(EFE)®, ()EE"). (16

The obvious property®,  (9+ ¢ E,E")=®,  (;E,E")
suggests the independence of the EFs from paraniepeo-
vided /27 is irrational. If &> g3, localized EFs can be con-
structed analogously by the duality transformation
n—K,y<X.

1
H(t)=JU] o+ Eh(UJﬁ— u;,g% St—m). (19

The one-period propagator from just after the kick
Qu(B)=2, P DECEIW,, [H.Q,(E)]=0.

U=ex |2h(U0’1+U0’_1) exp—iJUjg (20

The interesting critical case= B where one finds a singular

continuous fractal spectrum is not resolved by our analysisis equivalent to the Floquet quantum maps of two kicked
However, the time correlation function of a certain ob- OBIs:

servable(A(t)|A) may still decay to zero as— o, provided

that the observablé is orthogonal to the whole set of con- Z:{J':ex;{fsinf) sinx)ex _—Iasinf)x siny),
served charge®,(E) [11]. Let us assume thate M, , for h Y f

simplicity, and putd:=0 for convenience. If the continuous ] ) (21)
set of orthogonal localized EFs is normalized as localized i =ex _—I'BcosA cos< | ex _—Iacos" o
functions should be, namely, g9 (E,E’)|®(E,E'))=1, h Py h PxCOY |-
then the time-averaged autocorrelation function can be ex- R

pressed as In the following, we will consider only the mag*, since the

spaceMt, contains physically more interesting observables,
e.g., the spin current. The Floquet evolutiol”(m)

=0 ™PA(0), theimage of the Heisenberg evolution of ob-
servablesA(m) e 90t , is in the classical limit equivalent to
Therefore, the averaged correlation function vanishes angd symplectic(volume-preserving(2x2)D map onT?x R?,
observableA behaves as in an ergodic systemWif is or-

thogonal to all diagonal eigenfunctiods(E,E). Let us now X' =X+ acospysiny, py=p,—asinp,cosy,

assume again that< 8. Then, the EFs are given by expres- (22
sion (15) from which one easily recognizes the symmetry y’=y—,BCOS|O§, sinx’, P>’<=Px+,33inpf, cosx’,
relation

1 (T
Iim?fodt(A(t)|A)=f dE{WAD(E,E))|2 (17)

T—w

which is nonintegrable antalmos} fully chaotic for suffi-
®,oE,E)=D_,oEE), (18)  ciently large values of kick parameters,3>1. An interest-
ing question is now if and when the dynamicskdfXmhare
from which it follows that{¥'|®(E,E))=0 for any function  quantum mixing and how it corresponds to the dynamics of
of the formW, = 8y o — ¥ _p). Interestingly, this is pre- the classical mag22). This problem has been approached
cisely the case for thespin current [=W;;—WI 15,  numerically by iterating the one-body Floquet nizp on a
‘I"nfk= Ok o(On1— 6n—1). Therefore, we have shown finite (truncatedd momentum spacen(k) e {—N/2---N/2}2.
that the high-temperature (8<1) spin stiffness The position states are henceforth discretized;assj,y;
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FIG. 1. INC(m)| in kXXmhfor several indicated values of pa-
rametersa and e while 8= a/4. Note the transition to mixing dy-
namics ase is decreasedfrom heavy to light full curvesfor the

chaotic caser=6 and stable nonmixing behavior for the quasiregu-

lar casea=3 [dotted curve, curves for othésmall values ofe
would be almost indistinguishaljleBroken lines at If¥/3| indicate

the scalingC* =% = 3. In the two insets we show two orbits in the

momentum planéchaotic, diffusive fora=6 and quasiregular for
a=3) of the map(22) of length 3000 starting ak,=0.2,y,
=0, pxo=0, pyo=0.005.

=sj, wheres=2x/N. The truncated Floquet mdp" can be
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=3e—0 the point spectrum dff* vanishes and&XXmhap-
proaches mixing behavior in accordance with the classical
map (22). (i) For smaller but still nonvanishing values of
a,B the classical map enters into the regime of
Kol'mogorov-Arnold-Moser(KAM) quasiintegrability with
invariant tori suppressing the diffusion of momeng (p,)-
CorrespondinglykXXmhis strongly nonmixing andC* ~1

for any value of#i. In this regime,C(m) is very weakly#
dependent. In both regime@) and (i), the square widths of
the wave packets have been found taibé&ormlyincreasing

in time, (Wls(m)|pZ | Wis(m))ecm, and limited only by the
size of truncated momentum spadeThis rules out the pos-
sibility of quantum localizatiorand the existence of pure
point spectrumand indicates the coexistence pdint and
continuousspectra for any nonvanishing values ®fand

a, B, a situation which is very similar and possibly related to
the 1D kicked Harper mod¢lL2]. In the limit «,3—0, the
continuous spectral component vanishes and we recover the
integrable XXmh model with pure point spectrum as dis-
cussed above. The quantum correlation func@dm) seems

to follow the quasiclassical propagator only up to a logarith-
mically short time, namely, we found empirically that devia-
tion (when it is still small increases exponentiallyC(m)
—Cj_0(m)|~=0.0222e*™ with \~0.59 for =3, 8=0.75
and withA~1.1 for a=6, 8=1.5.

In a specific infinite-dimensional class (Pauli spin, or
spinless fermionquantum field models in 1D, the Heisen-
berg time evolution in two disjoint infinite-dimensional lin-
ear subspaces of essential field observables has been shown
to beformally equivalento the Schrdinger dynamics of a

efficiently implemented by means of fast Fourier transforma|ass of nonlinear one-body image problems on a 2D torus

tion (FFT), namely, ifF is 1D FFT onN sites, then theN?
X N? Floquet matrix is decomposed as

(F'®1)(diagC, ) (F®F 1) (diagD, ) (1®F),

with diagonal matricesC,, \=exgi(B/h)sinsnsinzk] and
D, «=exd —i(a/h)sinf nsinsk]. One iteration of the Floquet

(or 2D lattice. Moreover, the continuum field limit in the
original problem has been shown to be equivalent to the
(quasjclassical limit in the image problem. Autonomous
models of this class were found to be quantum integrable and
related to a possibly novel class of integrable classical one-
body problems in two dimension®, 9). For example, the
dynamics of theXX chain in a static quasiperiodic transversal
field has been solved in terms of the Harper equattidi,

map requires- 4N2log,N computer operations per time step. and an interesting transition from ballistic to nonballistic
In order to avoid recurrences of quantum probability due tgSPin fransport has been discussed. However, time-dependent

finiteness of momentum space, we use an absorbing boun{-9-» periodically kickedmodels of this type behave in a
ary in momentum space, namely, after each iteration of th@onintegrable fashion, being mapped onto one-body prob-

truncated Floquet map we multiply the wave function by alems with a chaotic classical limit. It seems that spatial
box window, W, (m)— O(N/2—alf—|n|)O(N/2— BI% modulation is crucial to breaking integrability since a spin

—|k|)¥, (m). Convergence to the true quantum dynamicsChain kicked with a homogeneous transversal field remains
n, .

on a torus has been checked by comparing results for diffecOmpletely integrabl¢8]. In the continuum field limit our

ent truncations, saj andN/2, and we went up td=2

In Fig. 1 we show numerical results for the autocorrela-

tion function of the spin currer@(m) = (js(m)|j<(0)) while

similar, fully compatible results have been obtained for the®

time correlations of a few other observablég. For suffi-
ciently large kick parameters, 8 the classical mag22) is

strongly chaotic and mixing, exhibiting normal diffusion in a

momentum plane dy,p,). However,kXXmhmodel is not
asymptotically(as timem—oo) mixing for any nonvanishing
value of #: |C(m)| is rapidly (possibly exponentially de-
creasing down to some valug* =|C(m)|, where it satu-
rates. When we decreage C* decreases proportionally,
C*«f, and hence in the quasiclassical/continuum lidit

kicked spin chain modgkXXmbh has been demonstrated to
undergo a(phasg transition from mixing to nonmixing dy-
namics(similar to a transition found ifi3]), as its one-body
ounterpart in the classical limit undergoes a stochastic tran-
sition from chaotic to quasiregular motion. This is an inter-
esting link between quantum field theory and chaotic dynam-
ics and may inspire future research in this direction.

The numerical simulations in this work were performed
on a computer belonging to the Theoretical Physics division
(F1) of The Jozef Stefan Institute, Ljubljana. Their support,
as well as the financial support by the Ministry of Science
and Technology of the Republic of Slovenia, are gratefully
acknowledged.
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